Physics Opportunities with High Intensity Accelerators

The Six Accelerator Capability areas:

- Energy Frontier Hadron Colliders
- Energy Frontier Lepton and Gamma Colliders
- High Intensity Secondary Beams
 Driven by Protons
- High Intensity Electron and Photon Beams
- Electron-ion Colliders
- Accelerator Technology Testbeds and Test Beams

Example Acc. Sources:

- Neutrino super-beams
- Project-X
- Beta-beams
- DAEδALUS & pion DAR
- IsoDAR (isotope DAR)
- Neutrino Factory

Example Physics:

- Neutrino 3-flavor mixing
- Sterile neutrino hints
- Other weakly interacting and dark sector particles
- Non-standard neutrino interactions

Neutrino 3-flavor Mixing ⇒ **Precision Measurement Era**

$$U_{PMNS}^{2013} = \begin{pmatrix} 0.779 \ to \ 0.848 & 0.510 \ to \ 0.604 & 0.122 \ to \ 0.190 \\ 0.183 \ to \ 0.568 & 0.385 \ to \ 0.728 & 0.613 \ to \ 0.794 \\ 0.200 \ to \ 0.576 & 0.408 \ to \ 0.742 & 0.589 \ to \ 0.775 \end{pmatrix}$$

Neutrino mixings now known with similar error to 1995 quark mixings.

Beyond neutrino mixings:

- Need to determine "Mass Hierarchy"
 - Use long baseline experiments through matter effects (i.e. LBNE)
- Need to determine and measure "CP Violation"
 - Key question for the physics of neutrino mixing (also maybe Leptogenesis)
 - Difficult: need precision oscillation measurements

Key Experimental Requirements

- Beam (neutrino/antineutrino source) intensity
 - Statistics at a premium (especially for \overline{v} running)
 - Need good understanding of flux and flavor components
- Detector size and efficiency
 - Larger size can impact cost and detection efficiency
- Control of systematic uncertainties
 - Need to fit shape of event energy distribution
 - Energy dependence of flux, backgrounds, and efficiency
 - Need to compare v versus v
 distribution
 - May be complicated by v contamination in \overline{v} running

Examples

LBNE: Fermilab to South Dakota

- 35 kton Liquid Argon 700kW to 1200kW beam power
- Optimum 1300km distance for onaxis pion decay-in-flight
- Significant matter effects

Hyper-K: J-PARC to Hyper-K

- 560 kton water cherenkov 750kW beam power
- Off-axis 295km distance
- Small matter effects

Improvements with Better Accelerator Sources

Project-X:

x3 improved intensity for LBNE $(0.7MW \rightarrow 1.1MW \rightarrow 2.3MW)$

δ_{CP} Resolution in LBNE with Project X

Beta-Beams:

Pure v_e and \overline{v}_e beams generated by the β -decay of accelerated radio-nuclides stored in a high energy storage ring.

Measure v_e→v_μ oscillations

Improvements with Better Accelerator Sources (2)

DAEδALUS:

- Pion decay-at-rest neutrino source produced by high-intensity cyclotron
 - Very high-intensity $\overline{\nu}_{\mu}$ source with known spectrum

- Neutrino sources at three different distances
 - Use inverse-beta-decay interaction to isolate a pure sample of $\overline{\nu}_{\rm u} \to \overline{\nu}_{\rm e}$ oscillations

- Can combine DAEδALUS antineutrino data set with long baseline neutrino-only data for much improved CP violation search
 - Example: combination with Hyper-K

Collection of Data That Doesn't Fit 3-neutrino Model ⇒ Sterile Neutrinos?

• MiniBooNE/LSND v_e / \overline{v}_e appearance signals

Reactor Anomaly:
 v̄_e disappearance signals?

Data sets indicate a high Δm^2

Can be fit by introducing a new v, ...but it must be non-interacting (sterile)!

These signals are at the 2-4 σ level \Rightarrow Need new "definitive" experiments

Establishing the existence of sterile neutrinos would be a major result for particle physics

Probing $\Delta m^2 \sim 1 \text{ eV}^2$ Oscillations

Short and Very-short Baseline Oscillation Experiments

v - Source

- Need definitive experiments
 - Significance at the $> 5\sigma$ level
 - Smoking gun: Observation of oscillatory behavior within detector
- Several directions for next generation accelerator experiments
 - Multi-detector accelerator neutrino beam experiments
 - Very short baseline (VSBL)
 experiments with compact neutrino sources

- Many ideas and neutrino sources:
 - Reactor sources
 - Radioactive sources
 - Isotope sources
 - $-\pi$ / K decay-at-rest sources
 - $-\pi$ decay-in-flight sources
 - Low-energy v-Factory source

arXiv.org > hep-ph > arXiv:1204.5379

High Energy Physics - Phenomenology

Light Sterile Neutrinos: A White Paper

K. N. Abazajian, M. A. Acero, S. K. Agarwalla, A. A. Aguilar-Arevalo, C. H. Albright, S. Antusch, G. Barenboim, V. Barger, P. Bernardini, F. Bezrukov, O. E. Bjaelde, S. A. Bogacz, N. S. Bowden, A. Borice, A. D. Bross, B. Caccianiga, F. Cavanna, E. J. Chun, B. T. Cleveland, A. P. Collin, P. Coloma, J. C. D'Olivo, S. Das, A. de Gouvea, A. V. Derbin, R. Dharmapalan, J. S. Diaz, X. J. Ding, Z. Djurcie, R. Elliott, D. J. Ernst, A. Esmaili, J. J. Evans, E. Fernandez-Martinez, E. Figueroa-Feliciano, B. T. F. Gaffiot, R. Gandhi, Y. Gao, G. T. Garvey, V. N. Gavrin, P. Ghoshal, D. Gibin, C. Giunti, S. N. Gnine shown)

Improvements with Better Accelerator Sources

- Short baseline pion decay-in-flight beams
 - Project-X could provide an enhanced replacement to the existing Booster-**Neutrino Beam**
 - Multi-detector (near-mid-far) provide definitive sterile osc searches
 - LAr1: 1 kton liquid argon
 - BooNE-X: 1-2 kton oil/scint

Pion decay-at-rest beam Protons into dump

$$\rightarrow \pi^+ \rightarrow \nu_{\mu} \stackrel{\cdot}{\mu^+} \rightarrow e^+ \nu_e \stackrel{\overline{\nu}_{\mu}}{\overline{\nu}_{\mu}}$$

- Spallation neutron facilities
 - OscSNS: at SNS facility
 - JPARC SN facility
- Also, Project-X RCS option
- Physics signals:

v_e appearance v_u^{12} C neutral current Other Physics:

- v Coherent Scattering
- Supernova cross sections

Improvements with Better Accelerator Sources (2)

• IsoDAR: Isotope Decay-at-rest beam (high intensity \bar{v}_e source)

- p (60 MeV@10ma) into target → ⁸Li
- $^8\text{Li} \rightarrow ^8\text{Be} + \text{e}^- + \stackrel{-}{\nu_{\text{e}}}$
 - Known $\overline{\nu}_e$ energy spectrum (mean 6.5 MeV)
 - Observe changes in the event rate as a function of L/E
 - ~160,000 IBD events / yr in Kamland

Possible Staging of Neutrino Factory

Neutrino factory has the advantages:

- 1. well collimated beam
- 2. known energy spectrum
- 3. easier detection of outgoing μ^{\pm} in $\nu_{e} \rightarrow \nu_{\mu}$ but need magnitized detector
- vSTORM: Short baseline neutrino factory enabling a definitive search for sterile neutrinos
- L3NF: An initial long baseline neutrino factory, optimized for a detector at Homestake that exceeds the capabilities of conventional superbeam technology.
- NF: A full intensity neutrino factory ultimate source to enable precision CP violation measurements

S	ystem	Parameters	Unit	vSTORM	L3NF	NF
	forma	stored μ+ or μ-/year		8×10 ¹⁷	2×10 ²⁰	1.25×10 ²¹
		v_e or v_μ^* to detectors/yr		3×10 ¹⁷	9.4×10 ¹⁹	5.6×10 ²⁰
	Detector	Far Detector	Туре		Mag LAr	Mag LAr
		Distance from ring	km	1.5	1300	1300
		Mass	kT	1.3	10	30?
		magnetic field	T	2	0.5?	0.5?
		Near Detector	Type	Liquid Ar	Liquid Ar	Liquid Ar
	Δ	Distance from ring	m	50	100	100
		Mass	kT	0.1	1	2.7
		magnetic field	T	No	No	No

Non-Standard Neutrino Interactions

- Non-standard neutrino interactions (NSI) would alter matter effects in long baseline neutrino oscillation measurements
 - LBNE with Project-X has good baseline and statistics

NC NSI discovery reach (3σ C.L.)

- Precision neutrino-electron scattering can also probe NSI since it is a well-understood Standard Model process
 - An IsoDAR cyclotron experiment at Kamland would have good statistics for $\overline{v}_e + e \rightarrow \overline{v}_e + e$

Searching for Exotic Particles with Short-baseline Experiments

- Short baseline experiments are a good tool for exotic particle searches including axions, dark gauge bosons, and WIMPs
 - A "portal" to the dark sector is dark photon mixing with normal photons and π^0 / η^0 decays to photons can produce "dark-sector" particles
 - Best to run in a "beam-dump" mode (no decay region) to surpress the convential neutrino backgrounds from pion and muon decay.
 - Not compatible with regular neutrino running so need dedicated running
 - Intensity and energy are key parameters that could be significantly improved with various stages of Project-X

End of Part 1 Physics Opportunities

Backup Slides

